Misalkansuatu benda atau bangun dilakukan komposisi transformasi. Pertama ditransformasi T 1 yang bersesuaian dengan matriks M 1, dilanjutkan lagi dengan transformasi T 2 yang bersesuaian dengan matriks M 2, dan dilanjutkan lagi dengan transformasi T 3 yang bersesuaian dengan matriks M 3. Penulisan komposisinya yaitu :
MatematikaGEOMETRI Kelas 11 SMATransformasiTransformasi dengan MatrixGaris y=2x-5 ditransformasikan oleh trensformasi yang berkaitan dengan matriks 2 3 1 4. Persamaan bayangan garis itu adalah ...Transformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0035Matriks yang bersesuaian dengan refleksi terhadap garis y...0342Pada pemetaan Ax, y->A'y, -x, matriks transformasi ya...0205Bayangan titik 1,-3 jika ditransformasikan oleh matriks...0355Sebuah garis 3x+2y=6 ditranslasikan dengan matriks 3 -4...Teks videoJika melihat soal seperti ini maka cara mengerjakannya kita akan menggunakan konsep transformasi matriks invers matriks dan juga perkalian matriks ini adalah dari matriks ya. Kemudian ini adalah perkalian matriks 2 * 2 dikali dengan matriks 2 * 1 pada konsep transformasi matriks jika titik x koma y ditransformasikan dengan matriks 2 1 3 4, maka bayangannya yaitu X aksen y aksen akan menjadi dua tiga satu empat kali titik awalnya yaitu aksi Nah sekarang kita akan mencari ekstrimnya ini FB = 2 1 3 4 diinverskan di X dengan x aksen X aksen 6 maka x = inversnya adalah 1 per 2 x 4 adalah 8 dikurangi 1 dikali 3 adalah8 dikurangi 3 adalah 5 dikali dengan 2 dan 4 Kita pindah tempat lalu 1 dan 3 kita kalikan dengan negatif kemudian dikalikan dengan x dan y aksen maka ini akan menjadi 1 per 5 dikali dengan 4 X aksen dikurangi 3 Y aksen X aksen ditambah 2 y aksen ini akan menjadi = 4 per 5 x dikurangi 3 per 5 y aksen lalu minus 1 per 5 x ditambah 2 per 5 Sen ya. Nah kemudian kita akan masuk situs ikan x = 4 per 5 x aksen min 3 per 5 y aksen dan Y = min 1 per 5 x dan cos 2/5 ke dalam persamaan garisnya maka persamaan garisnya akan menjadi dirinya adalah minus 1 per 5 x aksen ditambah dengan 2 per 5= 2 x x nya adalah 4 per 5 x aksen dikurangi 3 per 5 y dikurangi dengan 5 untuk mempermudah semuanya kita kalikan dengan 5 maka akan menjadi minus X aksen ditambah dengan 2 y aksen = 10 x dengan 4 per 5 x aksen min 3 per 5 dikurangi 25 ini adalah minus Extraction ditambah dengan 2 y aksen = 8 x dikurangi 6 y aksen dikurangi 25 ini Kita pindah pindah ruas ya maka ini akan menjadi 8 y aksen kemudian dikurangi 9 x ditambah 25 sama dengan nol setelah mendapat bentuk yang paling sederhana kita akan hilangkan bentuk aksennya maka akan menjadi 89 x ditambah dengan 25 = 0 jadi persamaan bayangan garis itu adalah yang beda ya sampai jumpa di pertanyaan berikutnya
Jawab Misal x1 dan y1 ada di garis y = 2x - 5, maka menjadi: y1 = 2x1 - 5 . persamaan (i) karena dicerminkan garis y = x maka: x' = y1 . persamaan (ii) y' = x1 . persamaan (iii) subtitusikan persamaan (ii) dan (iii) ke persamaan (i) y1 = 2x1 - 5 x' = 2y' - 5 Jadi persamaan garisnya menjadi: 2y' = x' + 5 atau 2y = x + 5 Wah
BerandaBayangan garis x - 2y = 5 jika ditransformasi deng...PertanyaanBayangan garis x - 2y = 5 jika ditransformasi dengan matriks 3 1 5 2 dilanjutkan dengan pencerminan terhadap sumbu X adalah...Bayangan garis x - 2y = 5 jika ditransformasi dengan matriks dilanjutkan dengan pencerminan terhadap sumbu X adalah...11x + 4y = 54x + 2y = 54x + 11y = 53x + 5y = 53x + 11y = 5YLMahasiswa/Alumni Universitas Negeri SemarangPembahasanMencari nilai x dan y dan Diperoleh x = 2x' + 5y' dan y = -x' - 3y'. Substitusikan x dan y ke persamaan x - 2y = 5 2x' + 5y' - 2-x' - 3y' = 5 2x' + 5y' + 2x' + 6y' = 5 4x' + 11y' = 5 Diperoleh bayangan garis adalah 4x' + 11y' = 5Mencari nilai x dan y dan Diperoleh x = 2x' + 5y' dan y = -x' - 3y'. Substitusikan x dan y ke persamaan x - 2y = 5 2x' + 5y' - 2-x' - 3y' = 5 2x' + 5y' + 2x' + 6y' = 5 4x' + 11y' = 5 Diperoleh bayangan garis adalah 4x' + 11y' = 5 Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!6rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!1X19 XI-IPS 4 Tangkas SPembahasan lengkap bangetNPNovian PrihandoyoJawaban tidak sesuai Pembahasan lengkap banget Mudah dimengertiMRMaulida Rizky Wimala Makasih ❤️EAEksa AyuMakasih ❤️ Bantu banget©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
BilaM matriks refleksi berordo 2 × 2, maka: atau . Matriks M karena refleksi terhadap sumbu X, sumbu Y, garis y = x, dan garis y = - x dapat dicari dengan proses refleksi titik-titik satuan pada bidang koordinat sbb:
Skip to content Differensial Fungsi Komposisi Integral Integral Tentu Limit Logaritma Logika Persamaan Kuadrat Lingkaran Linier Transformasi Trigonometri Vektor HomeBayangan Garis x-2y=5 Bayangan garis bila ditransformasikan dengan matriks transformasi dilanjutkan dengan pencerminan terhadap sumbu X adalah … A. B. C. D. E. Pembahasan [C] dan Transformasi oleh dilanjutkan dengan adalah Substitusi ke persamaan garis asal menghasilkan Post navigation
Bayangangaris x-2y=5 bila ditransformasi dengan matriks transformasi (3 5) (1 2) dilanjutkan dengan pencerminan terhadap sumbu x adalah. Question from @NrRahmadhani13 - Sekolah Menengah Atas - Matematika
Bayangan garis x-2y=5 bila di transformasi dengan matriks transformasi [3 5] [1 2] dilanjutkan dengan pencerminan terhadap sumbu x adalah... dibantu yaa... Kalau menurut aku amaaf kalau salah Pertanyaan baru di Matematika Tia sedang belajar menunggangi kuda di gunung Bromo,dari pos A dia menuju ke arah Utara sejauh 60m. untuk pergi ke pos B kemudian berbelok ke arah tim … ur sejauh 30m. untuk pergi ke pos c belok ke arah selatan untuk menuju pos D sejauh perpisahan tia dan kuda tersebut jika dihitung dari titik awal hingga akhir Seperti halnya suara yang keluar saat kita berbicara atau berteriak, sinyal WiFi yang keluar dari sebuah Antena Router / Access Point akan semakin l … emah seiring dengan semakin jauhnya sinyal WiFi tersebut. Jaringan WiFi memiliki jangkauan yang dibatasi oleh daya transmisi, jenis antena, lokasi tempat mereka digunakan, dan kondisi lingkungan. Tipikal wireless router untuk keperluan dalam ruangan indoor dengan metode point-to-multipoint yang menggunakan standard b, g, dan ac memiliki jangkauan sekitar 30 meteran dan untuk memiliki jangkauan sekitar 70 meter. Sinyal umumnya tidak akan menembus dinding logam atau beton begitu juga pohon dan dedaunan merupakan penghalang frekuensi yang akan memblokir sebagian atau seluruh sinyal WiFi. Pak dullah akan memasang WiFi IEEE standard dirumahnya yang terletak pada koordinat 10, 10. Dapatkah Ananda menentukan persamaan jangkauan maksimum sinyal WiFi yang dipasang dirumah pak dullah...A Persamaannya x-10² + y-10² = 70B Persamaannya x-10² + y-10² = 30 C Persamaannya x-10²+y-10² = 70² D Persamaannya x-10² + y-10² = 30² EPersamaannya x-10² + y-10² = 10² Perhatikan gambar berikut. Banyak busur kecil pada gambar di atas adalah.... ikan D gurame umur 2 bulan disajikan tabel distribusi frekuensi berikut. Data ukuran ukuran pandang 7 Paniang MM 30-35 36-41 42-47 48 - 53 54 - 59 Me … dian dari data frekuensi 5 g 8 12 6 dari data tersebut adalah Sebuah bak mandi berbentuk balok berukuran panjang 120 cm, lebar 100 cm dan tinggi 80 cm, berisi air setengahnya. Jika ke dalam bak tersebut dimasukka … n 3 buah benda logam berbentuk kubus dengan panjang rusuk 40 tinggi air dalam bak sekarang? Tolong bantuanya...
Darisoal kita ketahu bahwa T1 adalah pencerminan terhadap garis y = x, memiliki matriks: dan T2 adalah , maka matriks tansformasinya adalah: Kita dapatkan x' = x dan y' = -yJadi, bayangan x - 2y + 4 = 0 adalah:x - 2y + 4 = 0x' - 2(-y') + 4 = 0x' + 2y' + 4 = 0ataux + 2y + 4 = 0JAWABAN: A 20.
MatematikaGEOMETRI Kelas 11 SMATransformasiTransformasi dengan MatrixGaris yang persamaannya x-2y+3=0 ditransformasikan dengan transformasi yang berkaitan dengan matriks [1 -3 2 -5]. Persamaan bayangan garis itu adalah .... A. 3x+2y-3=0 B. 3x-2y-3=0 C. 3x+2y+3=0 D. -x+y+3=0 E. x-y+3=0Transformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0035Matriks yang bersesuaian dengan refleksi terhadap garis y...0342Pada pemetaan Ax, y->A'y, -x, matriks transformasi ya...0205Bayangan titik 1,-3 jika ditransformasikan oleh matriks...0355Sebuah garis 3x+2y=6 ditranslasikan dengan matriks 3 -4...Teks videoKamu cover disini kita memiliki pertanyaan mengenai transformasi lalu Adapun konsep matriks yakni jika ab = ac, maka c. = a invers dikali B lalu Adapun rumus invers yakni Jika a = abcd maka inversnya adalah 1 per X D dikurang b * c * matriks D min b min c baik langsung saja kita kerjakan diketahui garis yang persamaan X min 2 y + 3 = 0 ditransformasikan dengan matriks 1 2 min 35 maka persamaan bayangan garis itu adalah Oke berarti X aksen y aksen = 12 min 3 min 5 dikali matriks X Yini berarti matriks X Y = 1 per 1 x minus 5 minus 2 dikali minus 31 dan Min 5 yang bertukar yakni min 51 Lalu 2 dan minus 3 dikali minus berarti Min 23 dikali X aksen D aksen maka matriks X Y = 1 x min 5 + 6 dikali matriks Min 5 Min 231 dikali matriks X aksen yang lalu x y = sesuai konsep perkalian matriks berarti Min 5 x x aksen yakni Min 5 x aksen x + 3 x y aksen yakni 3 Y aksen lalu min 2 x x aksen yakni min 2 x aksen ditambah 1 x y aksen yaknisend sesuai prinsip kesamaan matriks berarti X = min 5 x aksen ditambah 3 y aksen y = min 2 x aksen ditambah y aksen lalu berarti X min 2 y + 3 = 0 x dan y kita ganti dengan yang ini berarti Min 5 x aksen ditambah 3 y aksen ditambah 4 x aksen 2 y aksen ditambah 3 sama dengan nol lalu aksen yang bisa kita hilangkan menjadi min x + y + 3 = 0 yakni yang Oke sampai jumpa di berikutnya
Diketahuipersamaan garis x - 2y + 4 = 0. Tentukan bayangan garis tersebut jika ditranslasi oleh T = 3 2 . Bila T1 dinyatakan dengan matriks dc ba dan T2 dengan matriks sr qp maka dua transformasi berturut-turut mula-mula T1 dilanjutkan dengan T2 ditulis T2 o T1 = sr qp dc ba Contoh : 1. 3 = 0 jika dicerminkan terhadap garis y = x 5
Kelas 11 SMATransformasiTransformasi dengan MatrixGaris y=2x-5 ditransformasikan oleh transformasi yang berkaitan dengan matriks 2 3 1 4. Persamaan bayangan garis itu adalah ....Transformasi dengan MatrixTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0035Matriks yang bersesuaian dengan refleksi terhadap garis y...0342Pada pemetaan Ax, y->A'y, -x, matriks transformasi ya...0205Bayangan titik 1,-3 jika ditransformasikan oleh matriks...0355Sebuah garis 3x+2y=6 ditranslasikan dengan matriks 3 -4...Teks videoBaiklah pada pembahasan soal kali ini garis y = 2 x minus 5 ditransformasikan oleh transformasi yang berkaitan dengan matriks 2 3 1 4 persamaan bayangan garis itu adalah baik pertama saya lakukan transformasi dulu dari X Y menjadi X aksen D aksen dengan matriks transformasi t 2/3 1/4 na caranya adalah matriks yaitu matrik kolom Excel ini sekali kan dengan matriks transformasi 2314, maka Chevrolet matriks kolom X dan Y aksen nah kemudian yang kedua saya akan mencari X dan y dinyatakan dalam X aksen dan Y Nah maka x y matriks transformasi ini saya pindahkan ke sebelah kanan menjadi matriks invers 2 3 1 4 invers X aksenY aksen nah kemudian x y untuk mencari invers dari ini dari matriks Ini pertama kita cari dulu sabar determinan dari matriks b. 1 per determinannya adalah 1 dibagi 2 * 4. Jadi di sini juga kali 4. Jadi determinan ini adalah 2 * 4 dikurang 3 * 1 kemudian setelah itu saya kalikan dengan matriks adjoin matriks adjoin nya itu adalah Jika kita ingin mencari adjoint khusus untuk matriks ordo dua kali dua ini caranya gampang sekali yang pertama untuk bagian diagonal ini kita tukar tempatnya jadi di sini 24 maka menjadi 42 kemudian yang bagian diagonal ini kita ubah tandanya jadi di sini menjadi min 1 dan di sini min 3 C tapi ini hanya berlaku untuk matriks ordo 2 * 2 udah di sini saya x x aksen aksenChevrolet x y = 1 per 2 x 488 kurang 35 jadi 1 per 5 dikali 4 min 3 MIN 12 x aksen y aksen kemudian Sin 1 x y = 1/5 1 1/5 Kemudian untuk matriks 2 * 2 ini sekali kan dengan matriks kolom X aksen ya kan nah cara mengalikan nya yang pertama yang baris pertama ini saya tutup dulu ya baris kedua baris pertama ini saya kalikan dengan x aksen dan b aksen 4 x x aksen adalah 4 x aksen ditambah minus 3 x y aksen adalah min 3 Y aksen Kemudian untuk baris kedua sekali kan dengan x aksen dan b aksen min 1 x x aksen adalah minus X aksen x + 2 * xnanti Chevrolet xxx Maaf X Y = 1/5 nya saya masukkan saja jadi saya per 4 per 5 x aksen dikurang 3 per 5 y aksen kemudian minus X aksen per 5 ditambah 2 per 5 y aksen maka saya peroleh eksitu eksitu = 4 atau 5 x aksen dikurang 3 per y aksen sedangkan yang isinya itu adalah sama dengan minus X aksen per 5 + 2 per 5 y aksen selanjutnya X dan Y ini saya ke persamaan 2y = 2 x 5 maka kita peroleh kita peroleh minus X aksen phi per 5 + 2 per 5 y= 2 x x 2 x x x nya adalah ini 4 per 5 x aksen dikurang 3 per 5 y aksen kemudian 5 nah, kemudian ini kita peroleh minus X aksen phi per 5 + 2 per 5 y aksen = 2 x 488 per 5 x 2 x 3 adalah 6 jadi min 6 per 5 y aksen dikurang 5 kemudian tiap ruas ruas kiri dan ruas kanan sekali dengan 5 server oleh X aksen ditambah 2 y aksen = 8 x dikurangi 6 y aksen dikurang 25 Nah kemudian ini saya peroleh ini tindakan semua ke sebelah kanan diperoleh 0 = 8 min x aksen Ketika saya pindahkan ke sebelah kanan jadi + 8 x ditambah min x aksen itu sambilKemudian min 6 X dikurang 2 y aksen adalah minus 8 y aksen kemudian dikurang 25 atau ini kita juga bisa Nyatakan dalam X dan kan kita peroleh 0 = 9 X dikurang 8 y dikurang 25 Nah ini adalah bayangan Garis dari setelah ditransformasikan dengan transformasi 2/3 1/4 dan pada pilihannya itu adalah a. Baiklah sampai ketemu lagi di pembahasan soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Bayangangaris x-2y=5 bila ditransformasikan dengan matriks transformasi (3 5 1 2) dilanjutkan dengan pencerminan terhadap sumbu x adalah - 13418499. jelitalady1lady jelitalady1lady 26.11.2017 Matematika Sekolah Menengah Atas terjawab
Soal dan Pembahasan/Penyelesaian Matematika Matriks Transformasi 2. Bayangan Garis a. Tentukan bayangan garis x-2y-5=0 bila ditransformasikan adalah … Pembahasan x’ dan y’ merupakan bayangan x dan y melalui invers matriks karena diperoleh dengan melibatkan variabel x dan y. Kita ingin menentukan x dan y yang diperoleh melalui diperoleh x = 2x’+5y’ dan y = -1x’-3y’, sehingga dimasukkan ke persamaan garis dengan mengganti x dan y maka x-2y-5 = 0 2x’+5y’-2-1x’-3y’-5 = 0 2x’+5y’+2x’+6y’-5 = 0 4x’+11y’-5 = 0 Kemudian mengubah kembali variabel x’ menjadi x dan y’ menjadi y. Jadi bayangan garisnya adalah 4x+11y-5=0. b. Tentukan bayangan garis 5x+7y-7=0 bila ditransformasikan adalah … Pembahasan x’ dan y’ merupakan bayangan x dan y melalui invers matriks karena diperoleh dengan melibatkan variabel x dan y. Kita ingin menentukan x dan y yang diperoleh melalui diperoleh x = -1x’+2y’ dan y = -3x’-5y’, sehingga dimasukkan ke persamaan garis dengan mengganti x dan y maka 5x+7y-7 = 0 5-1x’+2y’+73x’-5y’-7 = 0 -5x’+10y’+21x’-35y’-7 = 0 16x’+-25y’-7 = 0 Kemudian mengubah kembali variabel x’ menjadi x dan y’ menjadi y. Jadi bayangan garisnya adalah 16x -35y -7 = 0. c. Tentukan bayangan garis 2x - y + 3 = 0 bila ditransformasikan adalah … Pembahasan x’ dan y’ merupakan bayangan x dan y melalui invers matriks karena diperoleh dengan melibatkan variabel x dan y. Kita ingin menentukan x dan y yang diperoleh melalui diperoleh x = 5x’-2y’ dan y = -2x’+ 1y’, sehingga dimasukkan ke persamaan garis dengan mengganti x dan y maka 2x - y + 3 = 0 25x’-2y’ - -2x’+ 1y’ + 3 = 0 10x’- 4y’+ 2x’ - 1y’ + 3 = 0 12x’- 5y’ + 3 = 0 Kemudian mengubah kembali variabel x’ menjadi x dan y’ menjadi y. Jadi bayangan garisnya adalah 12x -5y + 3 = 0. Page 2 Home About Us Contact Us Privacy Policy Disclaimer Terms Of Service Sitemap ▼
A y = 2x + 5 dan y = 2x - 15 B. y = 2x - 5 dan y = 2x + 15 C. y = 2x dan y = 2x - 10 D. y = 2x dan y = 2x + 10 E. y = 2x + 6 dan y = 2x - 14 34. Garis singgung pada lingkaran x 2 + y 2 - 4x + 6y - 12 = 0 membentuk sudut 45 0 dengan sumbu x positif. Salah satu persamaan garis singgung tersebut adalah
Kelas 11 SMATransformasiTransformasi dengan MatriksGaris lx-3y+3=0 ditransformasikan terhadap matriks 2 -3 -1 2. Hasil transformasi garis l mempunyai persamaan ..Transformasi dengan MatriksTransformasiGEOMETRIMatematikaRekomendasi video solusi lainnya0057Titik B-1, -4 ditranslasikan oleh T=4 -2. Bayangan ti...0340Lingkaran dengan persamaan L=x^2+y^2-6x+4y+7=0 ditranslas...0341Garis dengan persamaan 2 x+y+4=0 dicerminkan terhadap g...0413Bayangan titik A x, y oleh transformasi yang bersesuaia...Teks videoDari soal ini terdapat sebuah garis l yang akan ditransformasikan terhadap matriks berikut. Jadi pertama kita Tuliskan ada x koma Y yang akan ditransformasi oleh sebuah matriks yaitu 2 min 3 min 1 2 menghasilkan sebuah bayangan X aksen aksen jadi untuk mendapatkan X aksen aksen disini = matriks A 2 min 3 MIN 12 jika kita X dengan x y Jadi dengan cara perkalian matriks yaitu 2 * x + 3 x y hasilnya 2 X kurang 3 Y min 1 dikali x + 2 x y hasilnya adalah min x + 2y dari sini kita dapatkan S aksen = 2 x3 Y karena yang kita butuhkan adalah x maka X aksen + 3 Y = 2 X maka X = b / 2 persamaan itu X aksen + 3y 2 selanjutnya untuk y aksen = min x + 2y di sini karena X masih mengandung variabel y maka kita harus substitusi sehingga kita dapatkan y aksen = min x ax + 3 Y / 2 + 2y selanjutnya dapat kita x 2 persamaan sehingga 2 y aksen = min x X kurang 3 y ditambah 2 x 2 yaitu 4 y maka disini kita dapatkan 2 y aksen= min x aksen ditambah y karena yang kita butuhkan y maka = 2 y aksen ditambah X aksen jadi disini kita kembalikan substitusi lagi ya ke dalam X sehingga x = x aksen + 3 x 2 y aksen ditambah X aksen dibagi 2 hasilnya adalah x aksen + 3 x 14 x aksen dibagi 22 X aksen lalu ditambah 3 x 2 y aksen itu namanya aksen / 2 adalah 3 Y aksen dari sini kita substitusi X dan Y ke dalam garis X kurang 3 y + 3 = 0 di sini x adalah 2 x aksen3 G aksen lalu dikurang 3 G yang adalah dua Yayasan + X aksen tambah 3 sama dengan nol terdapat Tuliskan persamaan tanpa tanda aksen secara umum yaitu 2 x + 3 Y min 3 x 2 adalah min 6 y min 3 dikali X min 3 x 3 sama dengan nol selanjutnya 2 X kurang 3 x adalah min x selalu 3 Y kurang 6 y adalah min 3 y + 3 sama dengan nol kemudian kita X min persamaan maka kita dapatkan x + 3 Y kurang 3 = jadi opsi yang tepat adalah pilihan bagian A baik sampai bertemu di pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
a Refleksi terhadap titik (0, 0) Pada gambar di atas, bayangan titik yang direfleksikan pada titik O (0, 0). Pada ilustrasi di atas, disimpulkan formula pencerminan terhadap titik O (0, 0) positif dicerminkan berubah menjadi negative dan berlaku sebaliknya. Jika dijabarkan menjadi matriks transformasi, misalkan matriks transformasinya. sehingga.
Misalkan titik Ax, y terletak pada garis tersebut. Kemudian titik tersebut juga ditransformasikan oleh matriks . Misalkan bayangannya adalah A’x’, y’, maka didapatkan hubungan Sehingga Titik A’x’, y’ merupakan bayangan dari titik Ax, y. Karena titik Ax, y terletak pada parabola 5x - 2y = -3, maka titik A’x’, y’ terletak pada bayangannya. Sehingga bentuklah parabola tersebut ke dalam bentuk x’ dan y’, menggunakan hubungan yang telah didapat sebelumnya, yaitu x = 2x' + y' dan y = 7x' + 3y'. Maka Dalam bentuk umum didapat garis bayangannya adalah Karena diketahui persamaan garis bayangannya adalah x + my = n maka dan . Sehingga
. 6nh4axjukd.pages.dev/4746nh4axjukd.pages.dev/6676nh4axjukd.pages.dev/7176nh4axjukd.pages.dev/7796nh4axjukd.pages.dev/9556nh4axjukd.pages.dev/6946nh4axjukd.pages.dev/6706nh4axjukd.pages.dev/8616nh4axjukd.pages.dev/1696nh4axjukd.pages.dev/5216nh4axjukd.pages.dev/9386nh4axjukd.pages.dev/1026nh4axjukd.pages.dev/7606nh4axjukd.pages.dev/5446nh4axjukd.pages.dev/991
bayangan garis x 2y 5 bila ditransformasi dengan matriks